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There is considerable interest in determining lens volume in the living eye. Lens volume is of interest
to understand accommodative changes in the lens and to size accommodative IOLs (A-IOLs) to fit the
capsular bag. Some studies have suggested lens volume change during accommodation. Magnetic
Resonance Imaging (MRI) is the only method available to determine lens volume in vivo. MRl is, by its
nature, relatively low in temporal and spatial resolution. Therefore analysis often requires deter-
mining lens volume from single image slices with relatively low resolution on which only simple
image analysis methods can be used and without repeated measures. In this study, 7 T MRI scans
encompassing the full lens volume were performed on 19 enucleated pig eyes. The eyes were then
magnetic resonance imaging dissected to isolate and photograph the lens in profile and the lens volumes were measured
volume empirically using a fluid displacement method. Lens volumes were calculated from two- and three-
pig dimensional (2D and 3D) MR and 2D photographic profile images of the isolated lenses using several
different analysis methods. Image based and actual measured lens volumes were compared. The
average image-based volume of all lenses varied from the average measured volume of all lenses by
0.6%—6.4% depending on the image analysis method. Image analysis methods that use gradient based
edge detection showed higher precision with actual volumes (%: 0.957—0.990), while threshold
based segmentation had poorer correlations (r?: 0.759—0.828). The root-mean-square (RMS)
difference between image analysis based volumes and fluid displacement measured volumes ranged
from 8.51 pul to 25.79 pl. This provides an estimate of the error of previously published methods used
to calculate lens volume. Immobilized, enucleated porcine eyes permit improved MR image resolu-
tion relative to living eyes and therefore improved image analysis methods to calculate lens volume.
The results show that some of the accommodative changes in lens volume reported in the literature
are likely below the resolution limits of imaging methods used. MRI, even with detailed image
analysis methods used here, is unlikely to achieve the resolution required to accurately size an A-IOL
to the capsular bag.
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1. Introduction

Lens volume has been of interest because as the lens grows
throughout life (Augusteyn, 2007; Glasser and Campbell, 1999) lens
volume increases with age, lens dimensions, and hence volume,
vary between individuals of the same age, and lens volume has
been suggested to change during accommodation (Gerometta et al.,
2007; Sheppard et al., in press; Strenk et al., 2004). There is also
interest in understanding if accommodative intraocular lenses
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(A-IOLs) can restore accommodation to the presbyopic eye.
Although many A-IOLs are either in clinical use, in clinical trials or
undergoing research and development, significant challenges still
remain for clinically useful accommodative amplitudes to be ach-
ieved. One such remaining challenge for A-IOLs that are to be
placed within the capsular bag is matching the size of the A-IOL to
the size of the capsular bag. This may be essential for optimizing
accommodative performance or for customization to an individual
eye. Accurate methods for measuring phakic lens volume are
needed.

In vivo measurements of the human lens are limited because of
the relative inaccessibility of the lens within the eye. Lens axial
thickness is commonly measured using A-scan ultrasound, ultra-
sound biomicroscopy and partial coherence interferometry. Lens
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thickness and lens surface curvature have also been measured
using Scheimpflug imaging (Dubbelman et al., 2005; Rosales et al.,
2006), optical coherence tomography (Baikoff et al., 2004), and
phakometry (Atchison et al., 2008; Rosales and Marcos, 2006).
However, lens equatorial diameter cannot be measured in vivo with
any of these methods. Other than lens volume, lens diameter may
be one of the more important lens biometric parameters to know
for sizing an A-IOL to the capsular bag. Besides a few studies where
lens diameter has been measured in vivo in cases of congenital
aniridia, ocular albinism (Wilson, 1997) or in iridectomized
monkeys (Glasser et al., 2006; Wendt et al., 2008), the only other
method that has been used for in vivo lens equatorial diameter and
volume measurements is magnetic resonance imaging (MRI)
(Atchison et al., 2008; Jones et al., 2007; Strenk et al., 1999).

MRI has been used to measure age-related changes in lens
thickness and lens diameter (Atchison et al., 2008; Jones et al.,
2007; Kasthurirangan et al., 2011; Strenk et al., 1999), lens radius
of curvature (Atchison et al., 2008; Kasthurirangan et al., 2011), lens
cross sectional area (CSA) (Strenk et al., 2004), and ciliary body ring
diameter (Kasthurirangan et al., 2011; Strenk et al., 1999, 2006). In
these publications, lens biometric measurements were calculated
from single central MRI slices with in-plane resolutions between
0.078 and 0.31 mm. MRI measurements of in vivo lens dimensions
are limited by several factors. MRI is inherently low in spatial
resolution (hundreds of microns) relative to other ocular imaging
methods (tens of microns). The time required to capture MRI scans
is lengthy (seconds to minutes) relative to other ocular imaging
methods (milliseconds). The long imaging time in conjunction with
ocular instability due to eye blinks or eye movements adds further
inaccuracy to the images captured. Low spatial resolution, high
image noise and low image contrast make analysis and measure-
ment of MR images inherently inaccurate compared to other ocular
imaging techniques such as OCT with axial resolutions of 6—12 pm
and lateral resolutions of 27 um—60 pm (Borja et al., 2010b;
Grulkowski et al., 2009; Marussich et al., 2011; Shen et al., 2010;
Uhlhorn et al, 2008). The impracticality of routinely doing
repeated measures as is typical with other imaging methods,
further limits reliability of MRI measurements. To the knowledge of
the authors, repeated MRIs have been done on only a single lens in
one MRI study (Sheppard et al., in press). MRI studies have been
undertaken to attempt to improve image resolution, shorten
imaging time and eliminate artifacts for more accurate MRI
measurements of the accommodative structures (Langner et al.,
2010; Richdale et al., 2009; Sheppard et al., in press). However,
little attention has been given to the image analysis methods
employed to quantify the MR images. Although the image resolu-
tion may represent the primary limitation in determining lens
parameters accurately, the image analysis methods used will also
have inherent variability.

Several methods have been used to calculate volume from lens
images. These images include single slice MR images, profile
photographs of isolated lenses and profile images of lenses in situ in
partially dissected eyes. Lens volumes have been calculated using
CSA of lens profile photographs by counting pixels and then
applying the second Pappus centroid theorem (Gerometta et al.,
2007; Kong et al., 2009; Zamudio et al., 2008). Lens CSA has also
been calculated from a single central MRI slice (Strenk et al., 2004)
or from shadow-photogrammetry by fitting an oblate ellipsoid
(Borja et al., 2010a; Rosen et al., 2006), polynomials (Urs et al.,
2009), or a 10th-order cosine series function (Urs et al., 2010) to
the lens surfaces and integrating to find area and assuming axial
symmetry to calculate volume. Two groups have used information
from an entire lens MR image stack rather than from only a single
slice or profile image to calculate lens volume (Hermans et al.,
2009; Sheppard et al., in press).

Many mathematical models have been proposed to fit to lens
surface 2D cross section profiles. Volume can then be estimated by
assuming rotational symmetry about the anterior—posterior axis,
although lens volumes have not been calculated with all the
proposed 2D surface models. In human lenses, fourth (Strenk et al.,
2004) and tenth (Urs et al., 2009) order polynomials have been
applied to the anterior and posterior cross sectional 2D lens surface
profiles. Also, a 10th-order cosine series function (Urs et al., 2010)
has been applied to the entire lens profile. Aspheric equations were
applied to half of human lens cross section 2D profiles rotated
about the anterior—posterior axis (Dubbelman and van der Heijde,
2001; Hermans et al., 2009). Reilly and Ravi investigated four
possible models from which porcine lens volumes could be calcu-
lated, including spherical caps, oblate spheroids, and torispherical
domes to be applied to the anterior and posterior lens surfaces
(Reilly and Ravi, 2010).

While many lens two-dimensional measurements from MR
images such as axial thickness and diameter have been compared
to other methods, and several studies have calculated lens volumes,
no study has determined how accurately volume can be measured
from lens images. The study described here was undertaken to
determine resolution with which the volume of pig lenses could be
measured from images using several different methods. Three
dimensional MR images were obtained from whole enucleated pig
eyes. These MR images were made with anisotropic voxels as had
been done in most previous MRI studies. Following the MRIs, lenses
were extracted from the eyes. Volumes were calculated using
different combinations of image pre-processing, segmentation, and
volume calculation (Fig. 1) applied to three types of lens images
(Fig. 2). These calculated values were compared to direct empirical
fluid displacement volumetric measurements of the same extracted
lenses.

2. Materials and methods

The coordinate scheme used throughout this manuscript is that
the axis passing from the anterior surface to the posterior surface
along the optical axis of the lens will be referred to as the z-axis
(Fig. 3); a sagittal section of the lens is along the z-y plane; an
equatorial section of the lens is along the x-y plane; all 2D lens
images were acquired in the x-z plane and slices going into the
depth of the stack are along the y-axis.

2.1. Eye preparation

Enucleated eyes from approximately 6 month old pigs were
obtained from a supplier (Sioux-Preme Packing, Sioux Center, IA)
shipped overnight in saline in insulated boxes with ice packs. Some
lenses were rejected either because of damage to the lenses during
the experiments or because MR images showed fluid separation of
the capsule from the lens. Ultimately, data from nineteen eyes was
analyzed. Prior to MRI scans, eyes were pressurized via a needle
inserted into the vitreous chamber through the optic nerve which
was attached to a hydrostatic column with saline filled to a height
of 20.4 cm above the eye which corresponds to 15 mm Hg. For MRI
scans, the posterior sclera of the intact eyes was glued with
cyanoacrylate to the inside wall a 50 ml conical tube and the tube
was then completely filled with room temperature saline without
air bubbles. MRI methods are detailed below. Following MRI scans,
the eyes were removed from the conical tubes, placed in saline, and
dissected to remove the cornea and iris. The partly dissected eyes
were removed from the saline, the zonular fibers digested with a-
chymotrypsin solution (Sigma, St. Louis, MO), the lens was scooped
out of the eye with a plastic spatula peeling the lens from the
hyaloid membrane, and the lens returned to a saline filled glass
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Fig. 1. Pictorial representation of the methods used to analyze the image data. (A) In Methods 2.3.1, several of the near-central slices were examined and volume was calculated from the
slice with the greatest cross sectional area. (B) In Method 2.3.2, a spherical transform was performed on the image stack. This diagram shows a sphere (left) and a spherical transform of the
sphere (right). The surface of the sphere is shown in green, a segment of the sphere is shown in magenta, and the volume outside of the sphere is shown in yellow. In Methods 2.3.3, (C) the
lens edge is segmented in each slice of the image stack, (D) the Cartesian positions of the lens edges are interpolated and a polynomial fit around the edges to outline the entire lens surface,
(E) then a 2D projection (black shadow) of the lens is used in Methods 2.3.3.2 and 2.3.3.3. (F) Methods 2.4.1 use a profile image of the lens after the lens has been extracted from the eye. The
methods depicted in A, E, and F result in 2D images which are converted to (G) binary images. Volume is calculated from these binary images by two methods: (H) in the sum of disks
method, each row of lens pixels in the binary image is assumed to represent a cross section of a disk and the pixels in all disks are summed; (I) using Pappus’ Theorem, the volume is
calculated by treating the lens as an inflated torus. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

chamber for measurements described below. Lenses were extrac- oriented on a specially designed lens stand in a saline filled
ted from the eyes with minimal manipulation in this way without chamber and photographed in profile against a black background
any vitreous attached. Lenses damaged during the dissections were under a dissecting microscope (Olympus SZX12, Tokyo, Japan) with
not analyzed further. Extracted lenses were placed vertically a640 x 480 pixel digital video camera. Three images were captured

Fig. 2. Images of the lens from the same pig eye showing: (A) the most central slice from a stack of MR images, (B) the true central gray-scale interpolated image from the same 3-D stack of
MR images, and (C) a profile image of the extracted lens after removal of the lens from the eye. Overlays show the lens edge overlays from volume calculations from these three images,
respectively derived from (D) Method 2.3.1.1 on an MRI 2-D slice, (E) Method 2.3.2 applied to the whole MRI 3D stack, and (F) Method 2.4.1.1 applied to the extracted lens profile image.
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Fig. 3. Drawing shows the coordinate system used throughout this manuscript.
(A) The lens in sagittal section showing the z-x plane. (B) The lens in equatorial section
showing the x-y plane.

by positioning the lens on the stand, capturing an image, knocking
the lens off the stand, replacing it again and capturing another
image. This provided three independent images for analysis. The
lens images were calibrated to millimeters by photographing
millimeter ruled graph paper in the chamber at the same plane of
focus as the lens equator.

2.2. Magnetic resonance imaging

MRI scans were performed on the intact pig eyes with a 7 T
Biospec USR 70/30 horizontal bore with gradient insert BGA12
(Bruker, Karlsruhe, Germany) using a linear volume transmitter coil
(72 mm inner diameter, Bruker, Germany) and a quadrature surface
receiver coil (25 mm diameter, Bruker, Germany). The conical tube
was placed into the bore such that the anterior—posterior axis of the
eye was roughly vertical in raw MR images. The precise orientation
of the eye was purposefully not controlled when the eye was glued
in the tube or when the tube was positioned in the magnet. The
actual optical axis of an enucleated pig eye is likely impossible to
determine and tilt of the lens was compensated for through the
image analysis methods. An initial scout scan simultaneously
acquired slices in the z-y (sagittal-vertical), z-x (sagittal-horizontal)
and x-y (equatorial) planes for the purpose of defining the regions
of interest for the subsequent scans. Images were obtained using 2D
rapid acquisition and relaxation enhancement (RARE) factor 32,
repetition time (TR) 18 s, echo time (TE) 13 ms, with a total scan time

Table 1
Summary of lens volume calculation methods.

of 14 min. The gradient strength was adjusted so the theoretical
pixel size matched the real pixel size. Scans of phantoms indicated
that the temperature increased approximately 3 °C due to RF
heating during a full volume scan. Since MRI contrast is temperature
dependent, an analysis was performed to determine if there was
any change in signal to noise ratio in the lens from early slices to late
slices in a full 3D scan. No systematic change in image contrast was
observed. Slice thickness was 0.5 mm with no overlap or separation
between slices. The first three eyes were scanned with fields of view
of either 24 x 24 or 30 x 30. After this, the field of view was
standardized to 32 x 32 mm for all subsequent eyes. The slice
pixel matrix was 256 x 256 and pixel resolutions ranged from
0.09375 x 0.09375 x 0.5 to 0.125 x 0.125 x 0.5. This resulted in
image stacks of the lens with 45—50 images of 256 x 256 pixels.
Although each acquired image represents a tissue slice of 0.5 mm
thickness, each image obviously only comprises a single pixel in
depth in a 3D image stack. To generate a full 3D image stack of
256 x 256 x 256 voxels of the entire lens, there are effectively
(256—-50)/49 = 4.204 intervening or missing pixel planes between
each actual acquired image. There are potentially many different
ways in which this ‘missing’ information can be ‘filled in’ or
distributed to create the full 3D image stack for volumetric calcu-
lations, each with different benefits and drawbacks which are
addressed below.

Lens volumes were calculated using 9 different methods
(Table 1). Image acquisition and analysis was performed with
custom Matlab code (The MathWorks, Inc., Natick, MA; toolboxes
used were Data Acquisition, Image Acquisition, and Image Pro-
cessing). Six of these methods used the MR images, one method
measured the volume directly from the extracted lens, and two
methods used digital microscopic profile images of the extracted
lenses. Analyses were performed in triplicate on MR images in
those cases where user decisions could introduce variations.

2.3. MR image analysis
The following six methods were applied to the MR images.

2.3.1. Central MR slice

Volume calculations were applied on between 3 and 5 of the
individual central MRI 2D slices. The single slice that yielded the
largest lens volume was then assumed to represent the true mid-
lens 2D slice image. For each volume calculation, the selected 2D

Experimental Image Type Method of Pre-Processing Method of Segmentation Method of Extending to 3D  Calculation Method
Procedure
23.1.1 MRI Slice/Projection ~ Rotation, Gray-Scale Threshold  Binary edges Assume axial symmetry Pappus Centroid Theorem
2.3.1.2 MRI Slice/Projection  Rotation, Gray-Scale Threshold Binary edges Assume axial symmetry Sum of Disks Method
232 MRI Full Stack Rotation, Spherical Transform Probabilistic Gradient edge Gray-Scale Interpolation Count Pixels/Voxels
selection, user correction
233.1 MRI Full Stack None Canny edge, user correction  Cartesian Interpolation, Count Pixels/Voxels
polynomial extrapolation
2332 MRI Slice/Projection  None Canny edge, user correction  Cartesian Interpolation, Pappus Centroid Theorem
assume axial symmetry
2333 MRI Slice/Projection  None Canny edge, user correction  Cartesian Interpolation, Sum of Disks Method
assume axial symmetry
24.1.1 Isolated lens Slice/Projection  Rotation, Gray-Scale Threshold Binary edges Assume axial symmetry Pappus Centroid Theorem
2.4.1.2 Isolated lens Slice/Projection  Rotation, Gray-Scale Threshold Binary edges Assume axial symmetry Sum of Disks Method

242 Isolated lens Calculate volume of fluid displaced by the lens

Mass of Displaced Fluid
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cross sectional image in the z-x plane was converted to a binary
image by setting a gray-scale threshold which differentiated the
lens from background. Using this binary lens image, the orientation
of the major axis of the lens relative to the horizontal axis of the
image was calculated using the regionprops function in Matlab. This
major axis was used to rotate the image so the largest diameter of
the lens was aligned vertically with respect to the image borders.
This vertically aligned binary image was then analyzed using either
Pappus’ Theorem or the Sum of Disks method as described below.

2.3.1.1. Pappus’ theorem applied to central slice. After the lens image
was rotated as described above, first the lens diameter was deter-
mined in pixels. The horizontal perpendicular bisector of the lens
(lens axial thickness) was determined as the most central pixel row.
This number was rounded up if it was an even number. This hori-
zontal bisector does not necessarily result in an equal number of
pixels in the upper and lower halves of the lens image, so in
addition to using this central pixel row, another bisector one pixel
above this and another one pixel below this were also determined.
Of these three bisectors, the one that minimized the difference in
the number of pixels between the upper and lower halves of the
lens was selected as the vertical center of the lens. The centers of
mass (centroids) for the upper and lower halves of the lens were
calculated as the mean of all pixel image coordinates within each
lens half. Lens volume was calculated using Pappus’s second
centroid theorem:

Volume of lens = CSA x 7 xd

where CSA is the average cross sectional area of the upper and
lower halves of the lens image, 7 is the constant PI, and d is the
vertical distance between the centroids of each half of the
lens.(Gerometta et al.,, 2007) There is an inherent error in this
method in that it assumes that the horizontal perpendicular
bisector described above divides the lens equally into an upper
and lower half each with exactly the same number of pixels. To
determine the error introduced into the volume calculation from
this assumption, lens volumes were calculated using the three
different horizontal bisectors described above.

2.3.1.2. Sum of disks method applied to central slice. This analysis
was performed on the same vertically aligned binary image that
was created in Section 2.3.1 and using the same horizontal bisector
chosen above. This method assumes that the lens is rotationally
symmetric about the horizontal axis chosen and that the vertical
alignment of the image is accurate. Given these two assumptions,
each column of lens pixels in the binary image were taken to be
a 2D representation of a disk with a thickness equal to one pixel and
a diameter equal to the number of lens pixels in the column. The
lens volume was calculated as the sum of the number of pixels in all
the disks.

2.3.2. Spherical transform of the image stack

Lens volumes were calculated from entire MRI 3D stacks using
gray-scale interpolation. The 256 x 256 pixel x 50 image stack was
interpolated by gray-scale cubic interpolation to a 256 x 256 x 256
stack and then the major axis rotated in a similar manner as
described above in Section 2.3.1 in two orthogonal planes to correct
for tilt of the lens. The interpolated, rotated 3D stack of images was
then transformed from Cartesian (x = width, y = depth, and
z = height) into spherical coordinates (r = radius, § = azimuth, and
¢ = elevation) about a user selected position near the middle of the
lens to generate a new stack of 76 x 181 x 360 images. The middle
of the lens selected by the user only needed to be approximate
since variations would simply result in the edges of the lens being
located in slightly different places in the transformed images but

would not affect the dimensions of the lens. The purpose of this
spherical transformation was to render the curved lens surfaces
more planar. If the lens were a sphere, the lens surfaces would
appear as flat planes in the transformed images. The spherical
transform facilitates the edge detection and identification of these
surfaces. The spherical data was organized as a stack of depth, ¢,
with the size of each image being r by # (Fig. 4). The position of the
lens edge at each 6 (horizontal row) was determined by taking the
derivative of the image in the radial direction (vertical column).
Lens surface edge positions were accumulated in a ¢ by # image
where the value of each pixel was the radius from the original point
selected as the center of the lens at that ¢—f coordinate. Convo-
lution of the ¢ by # image with a Gaussian filter removed small,
noisy variations in the surface radius in this image. All voxels in the
Cartesian space which fell on or included the r, ¢, 6 edge

Fig. 4. Sample images from the spherical transform method (Method 2.3.2). The
interpolated 256 x 256 x 256 MRI stack has been spherically transformed into
a 76 x 181 x 360 stack defined by the spherical coordinates, r, 0, and ¢, respectively.
Lens edges were found using the stack of r x # images. Four of the sequence of 360
images are shown with detected lens edges marked in white and the value of ¢ for
each image labeled in the corner. The upper darker region of each of these transformed
images is the lens. The boundary between the lens and the anterior chamber, iris and
vitreous chamber can be readily discerned as the edge marked in white.
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coordinates were collected in a binary image stack. Lens volumes
were calculated as a sum of all voxels included in this 3D binary
stack.

2.3.3. Cartesian interpolation of the image stack

Lens volumes were calculated from entire MRI 3D stacks via
interpolation of the lens surface Cartesian coordinates (x, y, z). The
lens surface in each 2D image in the stack was found using a Canny
edge detector with threshold values set automatically by the
Matlab edge function. Pixels detected by the Canny edge detection
algorithm which were not part of the lens surface (iris, for example)
were manually removed. Lens surface data was interpolated in the
direction of the stack depth (y) to the same pixel resolution as the
in-plane (z-x) pixel resolution of each image slice using the Matlab
griddata function with the method set to ‘linear’ which performs
linear interpolation using Delaunay triangulation (Fig. 5). This
interpolates the lens edge points in the spaces between acquired
MRI slices (Fig. 5C and D), but does not extrapolate to the extreme
equatorial edge of the lens where y is a minimum or a maximum.
The reason the interpolation fails at the lens extremes is because
there is, of course, no 2D MR image with a single pixel that
represents the extreme edge points of the lens that would be
required for successful interpolation to these points. As the image

A,

¥

i

Fig. 5. Interpolation and extrapolation of lens edges from Method 2.3.3.1. Edges found
using the Canny edge detector are shown (A) in the x-y view and (B) in a 3D xyz view.
Interpolation of these edges fills in the spaces between slices as shown (C) in the x-y
view and (D) in a 3D xyz view. Lens edges were extrapolated with a 5th order poly-
nomial to fill in the two y-ends of the lens as shown (E) in the x-y view and (F) in a 3D
Xyz view.

slices near the edges of the lens, these single 2D MR images
represent a 0.5 mm thick tissue slice from a region of the lens that is
transitioning very steeply toward an apex. These single image slices
therefore contain a section of the lens that is of considerably greater
‘surface area’ on what would be ‘one side’ of the image relative to
the ‘surface area’ on what would be the ‘other side’ of the same
image. This is analogous to the last slice of a loaf of Italian bread that
contains the crust. To find the appropriate edge points of the lens,
lens surface data from the 5 to 7 image slices nearest the lens edge
were extrapolated by fitting a 5th order, 3-dimensional polynomial
(Fig. 5E and F). All of the calculated lens surface points were then
used to create a 3D binary image stack of the lens. This stack of lens
surface points was rotated in two orthogonal dimensions to correct
for tilt of the images. A 2D projection of the 3D image was calcu-
lated by collecting all x, z coordinates in the stack into a single
binary image by setting each pixel y coordinate to zero. This
effectively represents a profile image of the lens at the largest lens
mid-plane section.

2.3.3.1. Sum of voxels. Lens volumes were calculated as a sum of all
voxels included in the 3D binary stack described in Section 2.3.3.

2.3.3.2. Pappus’s theorem applied to projected 2D image. Lens
volume was calculated from the projected 2D image described at
the end of Section 2.3.3 using Pappus’s second centroid theorem as
described in Section 2.3.1.1. This method was used to determine
how accurately Pappus’s second centroid theorem reproduces the
‘true’ lens volume effectively determined from the same set of data.

2.3.3.3. Sum of disks method applied to projected 2D image. The
sum of disks method described in Section 2.3.1.2 was used to
calculate volume from the 2D image which was projected from the
Cartesian interpolated stack described at the end of Section 2.3.3.

2.4. Extracted lens measurements

The following three methods were applied to the lenses after
they were extracted from the eye.

2.4.1. Lens profile images

Lens volumes were calculated from the digitized lens profile
images using a custom Matlab program which converted a gray-
scale image to a binary image using a threshold to determine
which pixels were included in the lens. The binary lens image was
then rotated to ensure the major axis was vertically oriented.

2.4.1.1. Pappus’ theorem applied to lens profile images. Lens volumes
were calculated from the binary lens profile image using Pappus’s
second centroid theorem as described in Section 2.3.1.1.

2.4.1.2. Sum of disks method applied to lens profile images. Lens
volumes were calculated from the binary lens profile image using
the sum of disks method as described in Section 2.3.1.2.

2.4.2. Fluid displacement for volume determination

The actual volumes of the extracted lenses were measured using
a fluid displacement method. Extracted lenses were placed on a 23
gauge wire ring holder and submerged, while still suspended on
the wire ring, in a saline filled beaker on a laboratory scale to
measure the mass of the saline solution displaced by the lens and
wire holder. The wire holder was separately submerged to the same
depth as before to determine the volume of fluid displaced by the
wire alone and this value was subtracted from the weight of the
fluid displaced by the lens and wire holder to provide the mass of
the fluid displaced by the lens alone. The fluid density was assumed
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to be 1.0 g/cm?® and the volume of the lens is therefore directly
proportional to the mass of fluid that the lens displaced. This
method was calibrated using acrylic ball bearings of known diam-
eter (Fig. 6).

2.5. Isotropic voxel and repeatability evaluation

On one eye, rather than using cyanoacrylate to glue the eye to
the wall of the 50 ml conical tube, the eye was gently packed in
gauze in the saline filled tube. This prevented eye movement, but
allowed the eye to be removed and repositioned in the tube. First,
a 3D isotropic MRI scan was performed with voxels of size
0.145 x 0.145 x 0.145 mm, FoV 32 x 32 x 32 mm, matrix
220 x 220 x 220, RARE factor 32, effective echo time 139 ms,
repetition time 1200 ms, 1 average, scan time 22 min. Then, to
assess repeatability, the eye was also scanned three times using the
anisotropic MRI protocol described above. The eye was not moved
between the isotropic scan and the first anisotropic scan. After each
anisotropic scan, the eye was removed and then repositioned to
ensure the scans could be considered to be independent. The
images from the isotropic and the three repeated anisotropic scans
were analyzed using the sum of voxels from the Cartesian inter-
polation method, 2.3.3.1, and the spherical transform method, 2.3.2.

3. Results

The lens volumes calculated from the three repeated anisotropic
MRI scans and from the isotropic voxel scan are shown in Table 2.
Each image stack was analyzed three times to account for user
input in the analysis such as Canny edge selection or lens middle
selection. The standard deviations for all analyses and all image
stacks are 1.74 pl for the Cartesian interpolation method and 2.45 pl
for the spherical transform method. The volume calculated from
the isotropic scan and the first anisotropic scan (without moving
the eye) differed by 5.19 pl for the Cartesian interpolation method
and 4.35 pl for the spherical transform method.

Lens volume measured with Method 2.4.2 (fluid displacement)
was considered to be the gold standard for comparison with the
lens volume calculated with the image analysis methods. The
average volume of all lenses from Method 2.4.2, (fluid displacement
(Table 3)) was closest to the average volume calculated using
Method 2.4.1.1 (Pappus from profile image), with a difference of
0.6%. The largest percentage difference of any of the methods
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Fig. 6. Calibration of the fluid displacement method for measuring lens volume using
three acrylic ball bearings of known diameters. The volume of each ball was measured
5 times using the fluid displacement method. The standard deviations ranged from
0.0017 g to 0.0041 g. Error bars showing standard deviations are on the graph, but are
smaller than the symbols. The regression line shows a slope near one and an intercept
near zero.

Table 2

Volume of one pig lens calculated from one isotropic and three anisotropic image
stacks acquired from repeated MRI scans of the same pig eye. The isotropic stack and
the first anisotropic stack were acquired with the eye in the same position. The eye
was purposefully moved between the anisotropic scans.

Scan 3D Cartesian Spherical Transform
Interpolation

1 (isotropic) 390.99 + 0.18 391.80 + 0.40

1 396.18 + 0.67 396.15 + 0.35

2 392.46 + 0.70 392.78 + 0.52

3 393.46 + 0.26 390.83 + 1.34

Anisotropic Mean + SD 394.03 + 1.74 393.26 + 245

evaluated from the average volume of Method 2.4.2 (fluid
displacement) was 6.4% for Method 2.3.3.2 (Pappus from projected
2D MR image).

Variance in lens volumes could not be calculated from
Methods 2.3.1.1 (Pappus from central MR slice) and 2.3.1.2 (Sum
of disks from central slice) since there was only one image on
which to perform analysis (the slice with the largest cross
sectional area) and no user input that could introduce variability.
As a result, these methods were compared to Method 2.4.2 (fluid
displacement) using linear regressions rather than orthogonal
regressions which require a measure of variance. All other
volumetric methods were compared to Method 2.4.2 (fluid
displacement) using orthogonal regressions. The relationships
between lens volumes calculated from each image analysis
method and Method 2.4.2 (fluid displacement) are shown in
Fig. 7. The one-to-one line fell within the confidence limits of all
methods in the range of the lens volumes. The MRI methods
(Methods 2.3) of calculating volume showed higher correlations
with Method 2.4.2 (fluid displacement) volumes, than did the
profile image methods (Methods 2.4.1) as indicated by the R?
values. Among the MRI methods, those derived from Cartesian
interpolation (Methods 2.3.3) had higher correlations than those
which selected the slice with the largest cross sectional area
(Methods 2.3.1) or Method 2.3.2 (spherical transform) which
used gray scale interpolation.

Pappus’ method requires that the lens is divided in half. The
shapes, sizes and cross sectional areas of these halves vary
depending on image type and segmentation method. To determine
the best horizontal dividing line between these halves, lens
volumes were calculated for each of the three central horizontal
dividing lines for each lens. The difference in the volumes calcu-
lated from the three central dividing lines provides a measure of
one source of error inherent in Pappus’ method. In Method 2.3.3.2,
where the Pappus theorem was applied to the projected MRI slice
of the Cartesian interpolated stack, the average inherent error in
volume for all lenses was 3.17 pl + 1.6 with a range of 0.18—7.56 pl.

Table 3
Average volumes for all the lenses for the different methods.

Method Method Description Number Average % of Fluid

Number of Lenses Volume (ul) Displacement
2.3.1.1  MRI slice (Pappus) 19 3873 +£41.8 98.7
2.3.1.2 MR slice (Sum of Disks) 19 3774+ 414 96.2
232 MRI stack (spherical) 19 3974 + 373 1013
2.3.3.1  MRI stack (Cartesian) 19 402.6 - 38.9 102.6
2.33.2 MRl re-slice (Pappus) 19 4173 +£43.2 1064
2.33.3 MRIre-slice (Sum of Disks) 19 407.0 +42.7 103.7
24.1.1 Profile image (Pappus) 18 389.8 +414 994
24.1.2  Profile image (Sum of Disks) 18 387.2 £412 98.7

242 Fluid Displacement 19 392.3 +38.6 100.0
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Fig. 7. Plots of lens volumes derived from (A) Method 2.3.1.1, application of Pappus’s theorem to the central MRI 2-D slice, (B) Method 2.3.1.2, application of the sum of disks method
to the central MRI 2-D slice, (C) Method 2.3.2, a spherical transform of the MRI 3-D stack, (D) Method 2.3.3.1, a Cartesian interpolation of the MRI 3-D stack, (E) Method 2.3.3.2,
application of Pappus’s theorem to the central slice calculated from the Cartesian interpolation of the MRI 3-D stack, (F) Method 2.3.3.3, application of the sum of disks method to
the central slice calculated from the Cartesian interpolation of the MRI 3D Stack, (G) Method 2.4.1.1, application of Pappus’s theorem to the extracted lens profile, (H) Method 2.4.1.2,
application of the sum of disks method to the extracted lens profile image plotted against measured lens volumes from the fluid displacement method. Methods 2.3.1.1 and 2.3.1.2
show linear regression fits to the data because no standard deviations were available for each measurement. The rest show orthogonal regression fits to the data. Dashed lines
indicate upper and lower confidence limits. The ideal one-to-one line is shown in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

The mean error of 3.17 pl was greater than the average standard
deviation of the lens volumes obtained from the three individually
captured profile images of the same lens (1.65 pl). In other words,
capturing three individual profile images of the same lens gives
a smaller variance than the variance due to one source of error in
Pappus’ method when applied to MR images. In Method 2.4.1.1
(Pappus from lens profile images), the average inherent error in
the method (determined in the same way described above) was
0.88ul + 0.70 with a range of 0.00—2.61 pul compared to an average
standard deviation of lens volumes calculated from the three
individually captured profile images of 2.39 pl

4. Discussion

The fluid displacement method was considered as the gold
standard. Fluid displacement volumes showed low variance within
individual lenses in that the average of the standard deviations
from the three measurements of each lens expressed as
a percentage of each mean measurement from all lenses was 0.95%.
Accuracy was determined for the volumetric measurements by
using the same method on ball bearings of known volumes (Fig. 6).

A comparison was made between lens thicknesses calculated
from the Cartesian interpolated stack (Method 2.3.3.1) and the
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Fig. 8. Error in the volume calculated from the 2D projected images of a 3D simulated
lens that was systematically tilted in the y-z plane. The solid horizontal line indicates
the actual volume in calibrated units of the simulated 3D lens.

extracted lens profile image (Methods 2.4.1). Using Bland-Altman
analysis, the average difference between lens thicknesses from
these two methods was close to zero at —0.02 mm. The upper and
lower confidence limits (2 x SD) were 0.20 mm and -0.23
respectively. From these data, it appears that there was no consis-
tent difference in lens thickness when comparing the MR images
and the extracted lens after dissection. This would indicate that the
lens did not change shape in any consistent manner during removal
from the eye.

The Pappus and sum of disks methods applied to the MRI central
slice (Methods 2.3.1) and the two methods applied to profile images
of the extracted lens (Methods 2.4.1) calculate lens volume from
a single 2D image. These methods provided less precise volume
estimates than the other image analysis methods. The R? values
comparing these image analysis methods (Methods 2.3.1 and 2.4.1)
with fluid displacement measured volumes ranged from
0.759—0.828. Various factors may contribute to this range of R?
values, such as subjective judgments of the tilt of the lens prior to
capturing the lens profile image (Methods 2.4.1). Unaltered MRI
slices from Methods 2.3.1 (selected slice with the largest cross
sectional area) may have a similar error due to eyes placed in the
magnet in a tilted position. Although care was taken to ensure
lenses were not tilted in the y-z plane for the lens profile images,
the amount of lens tilt that might have been present was not
measured and could not be corrected for. Lens tilt was corrected in
the MRI data for the spherical transformed stack method (Method
2.3.2). In this method, the largest rotation required for any of the
MR images was 15°. To determine the error from the lens profile
images that a lens tilt in the y-z plane would introduce, the volume
of a simulated 3D lens which was tilted at 0.5° increments from
0° to 30° was calculated using Pappus theorem and sum of disks
(Fig. 8). The simulation shows that 15° of uncorrected tilt would

Table 4

account for an error in volume of approximately 2.0%. The RMS
percent differences between the fluid displacement measured
volumes and the lens profile calculated lens volumes are 4.4% and
4.8% (Table 4). Since these differences are greater than 2.0%, they
cannot be accounted for entirely by tilt. Further, the standard
deviations for independent profile images of the same lens had an
average of 0.6% + 0.3% with a range of 0.1%—1.5%. It would be ex-
pected that the lens would be tilted differently in each image, yet
this range of standard deviations is lower than either the 2.0%
predicted for lens tilt or the actual RMS percent differences
between the fluid displacement measured volumes and the lens
profile calculated lens volumes.

Methods using the central MRI slice (Method 2.3.1) and the lens
profile images (Methods 2.4.1) use gray-scale thresholding which
requires user input and is subject to variations. To determine the
effect of the choice of threshold, two profile images were tested
over the widest range of subjectively reasonable threshold values
determined by one user (MW). The calculated volume using the
Pappus method changed 1.7% over a threshold range of 25 (over
a possible range of 0—255) and by 1.9% over a threshold range of 33.
Therefore, the largest differences in lens volume from the gold
standard also cannot be explained solely by the threshold.

The selection of the MRI slice or plane of focus of the captured
image to be analyzed could contribute to the reduced precision of
the strictly 2D methods. Since the MRI slice dimensions (slice
thickness, number of slices) in Methods 2.3.1 (central MRI slice)
were pre-set as parameters during the MRI scans, the methods
using the central MRI slice (Methods 2.3.1) might be expected to
show greater precision than the lens image profile methods
(Methods 2.4.1). However, the limited resolution in the MRI stack
depth (slices taken at every 0.5 mm) could have a similar type of
error to the error introduced by the microscope plane of focus in
the digitally captured profile images. If the MR image section with
the largest cross sectional area was not actually a true mid-lens
sagittal section through the lens, the lens volume would be
underestimated. In the case of MRI, thicker image slices will
underestimate volume because the lens edges seen in the MR
images are effectively an average lens edge within this entire slice
thickness. The lens edge at the true center of the lens with the
largest circumference would appear smaller from this averaging.
The effect of this error would be even greater in previous studies
where 3 mm slices were analyzed (Atchison et al., 2008; Jones et al.,
2007; Kasthurirangan et al., 2011; Strenk et al., 1999, 2004). The
true center of the lens is also unlikely to be exactly centered within
the central MR image slice thickness resulting in stronger influence
on the lens edge from one side of the lens than the other, which
would also underestimate the true volume. All these sources of
error on the central MR image would underestimate the true lens
volume, and this is in fact what is observed (Table 4). For the lens
profile images, an improperly focused image could either

Comparisons between the fluid displacement measured lens volumes and the volumes calculated from the different imaging methods.

Method Mean difference

between imaging

RMS difference
between imaging

RMS % relative
to measured lens

Mean % relative
to measured

method and measured lens volumes method and measured volumes

lens volumes (mean =+ SD) lens volumes
23.1.1 MRI slice (Pappus) —5.65ul + 20.44 —1.4% 20.68 ul 5.3%
23.1.2 MRI slice (Sum of Disks) —15.55ul + 20.47 —4.0% 25.27 ul 6.4%
232 MRI stack (spherical) 448l +7.43 1.1% 8.51 ul 2.2%
2.3.3.1 MRI stack (Cartesian) 10.38ul + 3.69 2.6% 10.98 ul 2.8%
2332 MRI re-slice (Pappus) 25.07ul £+ 6.25 6.4% 25.79 W 6.6%
2333 MRI re-slice (Sum of Disks) 14.14pl + 6.29 3.6% 15.40 pl 3.9%
2411 Profile image (Pappus) —2.75ul + 17.66 —0.7% 17.39 pl 4.4%
2412 Profile image (Sum of Disks) —5.99ul + 18.40 -1.5% 18.86 pl 4.8%
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underestimate or overestimate the actual lens volume. Table 4
shows that the lens profile image analysis methods underesti-
mate true lens volume. This could also be due to calibration
inaccuracies.

The spherical transform of MR image stack (Method 2.3.2) has
the advantages that the entire stack was used in the volume
calculation and no equation is required to model the lens surfaces.
The main sources of error may come from the gray-scale interpo-
lation of the slices to a 3D stack and the required smoothing, both of
which convert the transformed data to an inexact and somewhat
idealized reproduction of the original data. However, the interpo-
lation uses neighboring slices so multiple images contribute to the
segmentation process.

The Cartesian interpolated stack (Methods 2.3.3), also used the
full MRI stack to calculate volume. These methods did not use any
image smoothing, gray-scale interpolation, or other pre-processing
or a model for calculations. Therefore, although these methods
have the necessary disadvantage of segmentation prior to inter-
polation, they had the advantage of better interpolation based on
surface position rather than gray-scale intensity. The Pappus’
method and the sum of disks applied to the 2D projected MRI image
(Methods 2.3.3.2 and 2.3.3.3) required the additional step of
calculating a 2D projected image. All three of these methods
(Methods 2.3.3.1, 2.3.3.2 and 2.3.3.3) showed superior precision
compared to the fluid displacement measured volumes relative to
the other image analysis methods as indicated by R*> values of
approximately 0.99 with the R? value from summing voxels from
the 3D stack (Method 2.3.3.1) being fractionally higher. This latter
method was also the most accurate method having a slope of the
linear regression with fluid displacement measured lens volumes
closest to 1.0 (Table 5) and the smallest standard deviations
(Table 4). All three methods provided results which were close to,
but consistently overestimated, the fluid displacement measured
lens volume. The most likely cause of overestimation is the
segmentation, which in this case was the Canny edge detector. The
Matlab default threshold value was used for the Canny edge
detector. It is likely that changing this value would affect the esti-
mation of the lens volumes.

The accuracy and precision of the image analysis methods are
evident in the root-mean-square (RMS) difference between
volumes calculated by the image analysis methods and the fluid
displacement measured volumes (Table 4). The most accurate lens
volumetric calculations require analysis of full 3D stacks of MR
images, but this still results in an error of 8.51 pl, which is the
volume of a 2.04 x 2.04 x 2.04 mm cube (Fig. 9).

Rosen et al. (Rosen et al., 2006) applied an ellipsoidal fit to the
Strenk et al. human lens MRI surfaces (Strenk et al., 1999, 2004) and
found a range of volumes of human lenses from 130 to 200 ul over
an age range of 20—62 years. Similarly, Koretz et al. (Koretz et al.,
2001) showed an increase in lens volume over the age range of
18—70 years from 200 to 260 ul assuming their data should be
multiplied by a factor of 1000 (Hermans et al., 2009). These 60 and

Table 5

Fig. 9. Demonstration of the extent of error in the measured volumes drawn into the
central slice of a stack of pig lens MR images. The black square adjacent to the lens
represents a cube with sides of length 2.04 mm. This is the 2D equivalent of an error in
the lens volume of 8.51 pl which is the same as the RMS of the differences in volume
between Method 2.3.2 (spherical transform of the image stack) and fluid displacement
measured lens volumes. This lens had a fluid displacement measured volume of 389 pl.

70 ul age-related increases in MRI calculated human lens volume
are greater than the minimum error reported here for pig lenses
which have considerably larger volumes than human lenses and
therefore are certainly within the resolution limits of the methods
described here.

Strenk et al. (Strenk et al., 2004) measured CSA of human lenses
in MR images and reported an increase in CSA with accommodation
and further stated that these increases in CSA should translate to
increases in volume assuming symmetry about the lens ante-
rior—posterior axis. Insufficient information was given by Strenk
et al. to convert CSA to volume except for the two subjects in their
repeatability study. In these two cases, an ellipsoidal fit can be
applied to the data to give an estimate of the volume as was done by
Rosen et al. (Rosen et al., 2006). The calculated volume of a 22-year-
old lens increased with accommodation by 4.7 pl and the calculated
volume of a 49-year-old lens remained at 180.4 pl. These values are
less than the minimum error reported here for pig lenses (Method
2.3.3.1 — Cartesian interpolation). The method of Strenk et al. was
most similar to Method 2.3.1.1 (Pappus on MRI slices) which had an
RMS error of 20.68 pl. Therefore, the methods used by Strenk et al.
would not have had the resolution necessary to detect the increase
in lens volume reported. Hermans et al. reported a mean volume of
human lenses of 160.1 + 2.5 pl and a non-significant change in lens
volume of 0.1 ul (mm?) with accommodation in five human
subjects (Hermans et al., 2009). Using a photographic method of
image acquisition, Zamudio et al. (Zamudio et al., 2008) reported
that bovine lenses decrease in volume by an average of 72 pl
(=10 pwl—180 pl) when mechanically stretched. The method used

Lens volume linear regression results for Methods 2.3.1.1 and 2.3.1.2 and orthogonal regression results for the other volumetric methods versus the fluid displacement

measured lens volume.

Method Method Description Intercept Slope Lower Confidence Limit Upper Confidence Limit Correlation R?

2.3.1.1 MRI slice (Pappus) 143 0.949 NA NA NA 0.764
23.1.2 MRI slice (Sum of Disks) 9.2 0.937 NA NA NA 0.759
232 MRI stack (spherical) 11.28 0.983 0.892 1.091 0.981 0.963
2.3.3.1 MRI stack (Cartesian) 4.54 1.013 0.964 1.066 0.995 0.990
2332 MRI re-slice (Pappus) —23.46 1.122 1.054 1.195 0.993 0.985
2333 MRI re-slice (Sum of Disks) -30.47 1.114 1.050 1.185 0.993 0.986
24.1.1 Profile image (Pappus) —54.33 1.129 0.887 1.514 0.897 0.804
2412 Profile image (Sum of Disks) —54.85 1.124 0.883 1.507 0.897 0.805
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here that was most similar was Pappus’s theorem applied to the
profile image of the extracted lens (Method 2.4.1.1). This had an
RMS error of 17.39 pul. Based on this, changes smaller than about
20 pl would be too small to detect. Sheppard et al. (Sheppard et al.,
in press) reported a 2.3% increase in volume in human lens with
accommodation which corresponds to an increase in volume of
3.56 pl based on their reported average lens volume. This is less
than the minimum error reported here for Cartesian interpolation.
The increases in lens volume during accommodation that have
been reported in the literature are therefore either close to or below
the resolution limits of the methods being employed to measure
lens volume. A question remains as to how lens volume could
increase during accommodation. One potential caveat that has
rarely been addressed in the published in vivo studies is how the
iris is differentiated from the lens in the image analysis methods
employed. As the eye accommodates, the iris constricts and so
a larger part of the lens surface is in contact with the iris. Perhaps
the increase in lens volume that has been reported is simply an
artifact due to an inability to accurately differentiate iris from lens,
and more so in the accommodated eye. Kasthurirangan et al.
addressed the problem associated with contact between iris and
lens by not analyzing portions of the lens in contact with the iris,
however they did not report lens volume measurements. It is
possible that the iris and lens could be distinguished by adjusting
the T1 and T2 weighting of the scans. However, this still does not
result in a clear lens surface as exists within the pupil or on the
posterior lens surface where the iris is not present. Langner et al.
showed MR images of excised human and monkey eyes where the
iris intensity was noticeably different from the lens (Langner et al.,
2010). However, the portions of the iris touching the lens would
still create some challenges to image analysis.

None of the methods presented here used a model to represent
the lens surface. Methods using models described previously were
attempted (Hermans et al,, 2009; Reilly and Ravi, 2010). In the
method of Hermans et al., all surface points from human lenses
were projected to one cross-sectional plane by setting the angular
component to zero and then these points were fitted with an
aspheric equation. This method worked poorly on pig lenses
because of the constraints described for the aspheric equation.
Other constraints to join the lens caps to the lens surfaces were
attempted, but resulted in discontinuities so this method was not
pursued further. The four models proposed by Reilly and Ravi for
porcine lenses were also attempted. Visual inspection of fits
showed that the equation poorly fit the data — especially at the
anterior and posterior lens poles, so this method was not pursued
further. Pappus’s theorem or sum of disks applied to any of the 2D
images or counts of voxels in either spherically transformed stacks
or Cartesian interpolated stacks required the assumption of
symmetry about the anterior—posterior axis. However, all these
methods could be applied to primate lenses as they were applied
here to porcine lenses.

The experimental MRI conditions used here on enucleated pig
eyes have many advantages with respect to image resolution over
most MRI methods that have previously been reported for use with
living human subjects. The scanner used was a 7 T MRI with a small
diameter bore for use with small animals. As has recently been
demonstrated, 7 T allows for increased image resolution over
magnet strengths that have generally been used (Langner et al.,
2010; Richdale et al., 2009). Additionally, isolated pig eyes were
used which were glued to the edge of a conical tube in saline and
this ensured absolute stability of the eyes. In vivo MR imaging in
living human eyes would result in reduced resolution and accuracy
due to eye movements, blinks and the need for shorter imaging
time. Even with efforts to avoid blinks (Sheppard et al., in press),
complete ocular stability cannot be achieved. Regardless, the results

reported here indicate that greater accuracy will result from anal-
ysis which utilizes data from the full 3D image stack as opposed to
asingle 2D central image slice. Even with the near ideal MR imaging
methods employed here, accuracy of the lens volume of better than
1% is not reliably attainable. With the reduced image resolution that
would result from imaging living human eyes, the accuracy will
certainly decrease further. Therefore, if development of reliable A-
IOLs requires greater accuracy in measuring lens volume, this will
not be attainable with MRI methods published to date.
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